Conyacサービス終了のお知らせ

[英語から日本語への翻訳依頼] 今後5年間に、どのように機械学習が大きなイノベーションを加速するか 機械学習は黄金時代に入りつつあり、それにより、かつてはSFの世界の話であったよう...

この英語から日本語への翻訳依頼は yyokoba さん nobeldrsd さん transcontinents さん masa4underwoods さん yakuok さん isshi さん kocka さん daisydg さん cocomon さん msjames さんの 10人の翻訳者によって翻訳され、合計 20件の翻訳が投稿されました。 依頼の原文の文字数は 5453文字 で、翻訳完了までにかかった時間は 35時間 36分 です。

startupdatingによる依頼 2015/03/02 11:11:01 閲覧 3958回
残り時間: 終了

How machine learning will fuel huge innovation over the next 5 years

Machine learning is coming into a golden age, and with it we’re seeing an awakening of possibilities formerly reserved for science fiction.

Machine learning (ML) is a computer’s way of learning from examples, and it’s one of the most useful tools we have for the construction of artificial intelligence (AI). It begins with the design of an algorithm that learns from collected data, creating machines that in most cases become smarter as data volumes intensify.

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 11:27:36に投稿されました
今後5年間に、どのように機械学習が大きなイノベーションを加速するか

機械学習は黄金時代に入りつつあり、それにより、かつてはSFの世界の話であったようなことが、実現しつつある。

機械学習(ML)は、コンピューターが実例をもとに学習する方法で、人工知能(AI)を構築する上で最も有用なツールの一つである。収集されたデータから学習するアルゴリズムの設計に始まり、多くの場合、データ量が増えるに従いより賢くなる機械ができあがる。
startupdatingさんはこの翻訳を気に入りました
isshi
評価 50
翻訳 / 日本語
- 2015/03/02 11:52:18に投稿されました
機械学習がこの先5年間でもたらす大きな革新

機械学習は黄金期に差し掛かっており、我々はかつてサイエンスフィクションの世界でしかありえなかった可能性が実現に向けて目覚めているのを目の当たりにしている。

機械学習(ML)はコンピューターが、事例から学習していく手法のことであり、人工知能(AI)を構築していくうえで最も有益なツールの一つである。データ集合をもとに機械を構築するためのアルゴリズムを設計するところから始まるが、その場合データ量が多ければ多いほどそのアルゴリズムは賢くなる
startupdatingさんはこの翻訳を気に入りました

We’ve seen a breakthrough in the field of ML in the last five years in part due to the recent wealth of big data streams provided from high-speed internet, cloud computing, and widespread smartphone usage, leading to the birth of the now popular “deep learning” algorithms. Heavily- used applications that have emerged with ML at their core include recommendation systems like those from Netflix and Amazon, face recognition technology as seen in Facebook, email spam filters like those from Google and Microsoft, and speech recognition systems such as Siri.

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 11:43:15に投稿されました
過去5年間にML分野で起きたブレークスルーは、少なくとも部分的には、高速インターネット、クラウドコンピューティング、そしてスマートフォンの普及による、最近のビッグデータの流通のおかげであり、現在注目を集めている「深層学習」アルゴリズムの誕生につながった。MLの根本的な部分から派生した、非常によく使われている応用のなかには、NetflixやAmazonのおすすめシステム、Facebookにみられる顔認識技術、GoogleやMicrosoftなどによるEメール用スパムフィルター、そしてSiriなどの音声認識システムがある。
startupdatingさんはこの翻訳を気に入りました
isshi
評価 50
翻訳 / 日本語
- 2015/03/02 12:17:35に投稿されました
過去5年間でMLの分野は飛躍的な進歩を遂げたが、その一因となるのが高速のインターネット通信、クラウドコンピューティング、スマートフォンの普及により近年豊富に供給されたビッグデータのストリーム処理であり、それが今話題の「ディープラーニング」のアルゴリズムの誕生を導いた。現在広く使用されているアプリケーションがMLを軸として登場し、その例がNetfizやAmazonのような推薦システム、Google やMicrosoftのようなスパムメールフィルター機能、そしてSiriのような音声認識システムである。
startupdatingさんはこの翻訳を気に入りました
★★★★★ 5.0/1
isshi
isshi- 9年以上前
NetfizはNetflixの誤植です。申し訳ありません。また、「Facebookにみられる顔認識技術」の記載が漏れています。
申し訳ありません。以後注意いたします。

While the depth of advancement is unknown, what we can say with high certainty is that development in this field in the past five years will be nothing compared to what we’re going to see in the five years to come. Based on machine learning’s current state, here are four predictions of what we could see in the near future:

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 11:48:52に投稿されました
どれくらい進歩するかは分からないが、確実に言えることは、この分野における過去5年間の成果は、これからの5年間に私たちが見るであろう進歩とは比べものにならないということである。機械学習の現状をふまえて、近い将来実現するかもしれない4つの予想を示そう:
startupdatingさんはこの翻訳を気に入りました
daisydg
評価 52
翻訳 / 日本語
- 2015/03/02 15:33:24に投稿されました
その発展がどの程度のものであるかは未知であるが、過去5年間のこの分野における進歩は、今後5年間のそれとは比にならないものであるということは断言できよう。機械学習の現状に基づいては、近い将来以下4つのことが予測される:
startupdatingさんはこの翻訳を気に入りました

Image-Based Recognition: The technology for image and video-based recognition is on the horizon, and with it a whole new experience for users. Thanks to deep learning, we are now at the dawn of computers recognizing images, and the people and actions within them, with high accuracy based on the image alone and with minimum reliance on external data. It’s not just new pictures that will become recognizable either, but the entire history of digitized images and video footage. This will massively change how these assets are located and shared online.

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 12:50:50に投稿されました
画像ベースによる認識: 画像および動画をもとにした認識技術は、すぐ近くまで来ており、それはユーザに全く新しい体験をもたらすだろう。深層学習のおかげで、外部データにほとんど頼らず画像だけで、高い精度で画像とその中の人や行動をも認識するコンピューターの時代が、すぐそこまで来ているのだ。それも新しい画像だけではなく、過去にデジタル化された画像や動画全てが認識可能になるのだ。これは、私たちがどのようにこれらの膨大な資産を、オンラインで探し出し共有するか、を大きく変えるであろう。
startupdatingさんはこの翻訳を気に入りました
yakuok
評価 66
ネイティブ
翻訳 / 日本語
- 2015/03/03 01:50:18に投稿されました
画像認識:この画像と動画に基づいた認識テクノロジーは実現化は目前で、ユーザにとって全く新しい体験となる。ディープラーニング(深層学習)のおかげで、我々は今、コンピューターが画像もしくは最小限の外部データのみで、画像や画像内の人々や行動を高い精度で認識するという新たな局面に立っている。さらに認識されるのは新しい写真のみではなく、デジタル化された画像や動画の履歴の一切が認識される。このテクノロジーによってこれら資産のオンライン上での保存や共有のあり方が大きく変わっていくだろう。
startupdatingさんはこの翻訳を気に入りました

For example, YouTube might soon intelligently find content related to parts of a clip you watched and liked based only on the visual content of the video itself. The resulting efficiencies in both our work and personal time will be profound.

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 12:57:30に投稿されました
たとえば、もうすぐYoutubeは、動画のうち、あなたが観て好感を持った部分に関連するコンテンツを、その動画の視覚的情報のみから、知的に探し出してくるかもしれない。そうなることにより節約される、私たちの手間と時間は計りしれない。
startupdatingさんはこの翻訳を気に入りました
daisydg
評価 52
翻訳 / 日本語
- 2015/03/02 17:16:13に投稿されました
例えば、YouTubeでは、利用者がみて気に入ったクリップの一部に関連した内容をビデオのビジュアルコンテンツそのもののみに基づき賢く探し出すようになるかもしれない。これにより我々の仕事とプライベートの時間両面にもたらされる効率性ははかり知れない。
startupdatingさんはこの翻訳を気に入りました

Healthcare: Machine learning’s ability to analyze and store massive amounts of data should provide physicians with much-needed second opinions and lead to the detection and treatment of medical ailments on a mass scale. Packaged as smart, wearable computing devices, personal health monitors that detect various conditions as they arise should become widespread in the next five years, in a similar fashion to activity trackers like Fitbit. The advancements here could significantly accelerate our human desire to protect our own longevity and create major breakthroughs for the operations of the medical industry.

cocomon
評価 52
翻訳 / 日本語
- 2015/03/03 03:59:14に投稿されました
健康管理:膨大な量のデータを分析・蓄積できるという機械学習の能力は、医者にとってかなりの場合必要とされるセカンドオピニオンを提供し、また複数単位での病気の発見と治療に導く。また、活動量計「Fitbit」と同様、おしゃれで身に装着できるコンピューテイング デバイスとして打ち出された、自身の様々なコンディションを探知するパーソナル健康モニターが、今後五年で普及するだろう。これらの進歩は、人間の長生きしたいという欲求を著しく加速させ、医療産業運営を大きく前進させるであろう。
startupdatingさんはこの翻訳を気に入りました
msjames
評価 51
翻訳 / 日本語
- 2015/03/03 05:51:05に投稿されました
保健医療:機械の分析機能と大量情報保存機能は医師たちに的確な最終判断を下すのに必要な情報を提供しするのに役立ち、大量規模での病気治療検出やたいにつながるであろう。フィットビットの様な活動追跡機器や高機能なウェアラブルコンピューター機器や様々な状態を探知可能な専用医療モニターはこの先5年のうちに瞬く間に普及されていく事が予想される。このような進歩は私たち自身の長生きしたいという希望を著しく促進させ、医療産業の操作のための主要な突破口をつくりだす。


Travel & Communication: By 2020, real-time translation technology may be fully accessible. We’ll see everything from an app on your phone that instantly translates foreign signs and texts to phone conversations that are immediately converted to a listener’s native language, without speakers even knowing the difference. As globalization booms, the language lines will soon be crossed. Business, in particular, stands to benefit enormously from the advancement here, with tech giants such as Google and Microsoft already taking the necessary steps to build such tools, making the need for a premium multilingual workforce obsolete.

yyokoba
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/02 13:15:39に投稿されました
旅行とコミュニケーション: 2020年までには、リアルタイム翻訳技術が本当に身近になっているかもしれない。外国の標識や文章を即時に翻訳してくるスマホのアプリから、会話を聞いている人の母国語に即時翻訳してくれ、しかも話し手にはその違いがわからないような電話までが出てくるだろう。グローバル化が広がるとともに、言語の壁は近いうちに越えられるだろう。特にビジネス界はこの進歩による膨大な恩恵を受ける立場にある。GoogleやMicrosoftといった巨大テクノロジー企業はすでにそのようなツールを作るために必要な作業を行っており、高価なマルチリンガル労働者の必要性を過去のものにするだろう。
startupdatingさんはこの翻訳を気に入りました
masa4underwoods
評価 61
翻訳 / 日本語
- 2015/03/02 23:34:05に投稿されました
トラベル&コミュニケーション:2020年までに、リアルタイム翻訳技術は完全に利用できるようになるかもしれない。外国のサインと文字を瞬時に訳してくれる電話のアプリから、相手がその違いに気付かないまま即座に聞き手の母国語に変換される電話の会話まで、私たちは全て見ることになる。グローバリゼーションが進展するなか、近いうちに、言語の境界線は越えられる。特にビジネスはこの技術の進歩から大きな利益を得ることになる。GoogleやMicrosoftなどの巨大テクノロジー企業は非常に有能な多言語を使いこなす人員を不必要にさせるべく、そのようなツールを作るために必要な手順をすでに踏んでいる。
★★★★★ 5.0/1
masa4underwoods
masa4underwoods- 9年以上前
数字の半角を忘れていました。申し訳ございません。

Advertising: Based on recent ML advancements, in just a few short years augmented reality technology should become the commonplace method for integrated branding. This will allow advertisers to seamlessly place products into existing content by properly identifying the depth, relative size, lighting, and shading of the product in comparison to the setting. This essentially makes any historical video property available for integration. The computer vision technology firm Mirriad has already been heralded (and won an Oscar) for its advancements in the field. Looking at online video, as companies continue to try and tap into hugely popular amateur content, this technology will revolutionize their capabilities.

kocka
評価 52
翻訳 / 日本語
- 2015/03/03 10:34:19に投稿されました
広告:近年のML(機会学習)の発達により、わずか数年のうちには拡張現実(AR)技術が統合ブランド化にとってあたりまえの手法となるであろう。この手法では奥行き・相対的サイズ・照明・影を識別し、広告主がシームレスに既存のコンテンツに商品を入れ込むことができる。基本的にどのような歴史的ビデオでも、合体させることが可能だ。コンピューター・ビジョン・テクノロジー企業のMirriadではすでにこの分野の発展で称賛を受けている(オスカーも受賞)。オンライン動画を見ると、各企業が絶大な人気のアマチュア動画に入り込もうと努力を続けているが、この技術で可能性は革命的に広がる。
startupdatingさんはこの翻訳を気に入りました
cocomon
評価 52
翻訳 / 日本語
- 2015/03/03 05:17:47に投稿されました
広告業:最近のMLの進歩に目を向けると、今後数年で拡張現実技術が統合型ブランディングのありふれた手段になるであろうことがわかる。これは、現実環境に対して商品の深さ・相対的サイズ・照明・影を正確に認識させ、存在するコンテントに継ぎ目なくその商品を追加することを広告主に可能にさせる。また、これは実質的に歴史上全ての映像物を統合化させるであろう。コンピュータービジョンテクノロジー会社Mirriad社はその分野の進歩の先触れ(オスカー賞受賞)である。あらゆる企業が人気アマチュアコンテンツに入り込もうとする動きがオンラインビデオを通し伝わり、この技術は企業の可能性に革命をおこすであろうことが想像できる。
startupdatingさんはこの翻訳を気に入りました

So while we have already seen enormous advancements in the fields above of late, a full-scale commercialization of machine learning technologies could be seen as soon as 2020. While I’ve only listed a few predictions above, almost all sectors of the economy stand to benefit enormously from the efficiencies of this new era of machine learning. We are already seeing a swell in consumer demand in experiences that require ML at their core, and the examples above only touch the surface of what is possible. If things continue on the trajectory we expect, the golden age of machine learning might very well make the next five years in technology the most exciting yet.

kocka
評価 52
翻訳 / 日本語
- 2015/03/03 11:37:21に投稿されました
上述の分野における最近の絶大なる発達をすでに我々も目にしているが、機会学習技術の商業化が全貌を現すのは2020年頃ではないだろうか。先ほど私が挙げた予測はほんの数点であるが、この機会学習新時代の効率化によって経済的にほぼすべての分野が得る恩恵ははかりしれない。すでにコアの部分でMLを必要とする消費者需要は増大しており、先に述べた例はMLがもたらす可能性の氷山の一角にすぎないのだ。もし我々の期待通りに事が進めば、機会学習の黄金期により、技術分野におけるこれからの5年は最もエキサイティングなものとなるだろう。
startupdatingさんはこの翻訳を気に入りました
cocomon
評価 52
翻訳 / 日本語
- 2015/03/03 06:30:49に投稿されました
上記後方で述べられた様々な分野での多大な発展を踏まえ、本格的な機械学習技術の事業化が2020年までには見られることになるだろう。上記では少しの予測しか述べれなかったが、機械学習の新時代が可能にする能力により、あらゆる経済部門に膨大な恩恵をもたらすであろう。コアな部分でMLを必要とする経験や、MLの可能性の一部に触れた上記の例等により、消費者の需要の波を感じる。私たちの予測どおりに事が進めば、今後5年で機械学習の黄金時代がテクノロジーを非常に興味深いものにしてくれるだろう。
startupdatingさんはこの翻訳を気に入りました

Mehrdad Fatourechi is CTO of BroadbandTV Corp (BBTV), a media-technology company that builds tools to help content creators grow. He has an in-depth knowledge of digital signal processing, machine learning, and pattern recognition algorithms and has authored several journal and conference papers with the focus on pattern recognition, machine learning, and intelligent algorithms. He previously held positions in the tech/education industry including as a research associate and sessional lecturer at the University of British Columbia as well as being the co-chair of the IEEE Signal Processing Chapter in Vancouver.

nobeldrsd
評価 68
翻訳 / 日本語
- 2015/03/03 19:12:07に投稿されました
Mehrdad Fatourechi氏は、コンテンツ制作に携わる人達の成長をサポートするツールを制作するメディア技術企業、BroadbandTV Corp (BBTV)のCTO(最高技術責任者)を務めている。彼は、デジタル信号処理、機械学習、パターン認識アルゴリズムに精通しており、パターン認識、機械学習、そして知的アルゴリズムに焦点を当てた幾つかのジャーナルや学会論文を執筆している。以前彼は、技術・教育分野に身を置き、研究員やブリティッシュコロンビア大学の非常勤講師を務めており、IEEE Signal Processingのバンクーバー支部の共同委員長の座にも就いていた。
startupdatingさんはこの翻訳を気に入りました
transcontinents
評価 61
ネイティブ
翻訳 / 日本語
- 2015/03/03 22:46:52に投稿されました
Mehrdad Fatourechiはコンテンツクリエーターに役立つツールを作成するメディアテクノロジー会社Broadband TV Corp (BBTV)のCTOである。デジタルシグナル加工、マシーンラーニング、パターン認識アルゴリズムに造詣が深く、パターン認識に焦点をあてた記事や会議資料もいくつか執筆している。これまでリサーチアソシエイト、ブリティッシュコロンビア大学非常勤講師など技術・教育産業に従事したほか、バンクーバーのIEEE Signal Processing Chapterを共宰。

クライアント

2015/01/21 数字表記についてアップデート済
THE BRIDGE(旧StartupDating)からの記事の依頼です。Tech in Asia、TechNode、e27などの記事の翻訳を依頼します。
必ず、以下のガイドラインに沿って翻訳してください。

*1行目はタイトルの場合がほとんどなので、それらしいヘッドラインにする
*文末を「〜だ、〜である」調の文体
*会社名、人名、プロダクト名などの固有名詞は英語名のまま。日本の人名や会社名の場合は日本語表記。
(Facebook、WeChat、Alibaba、iPhone、Google、Androidなど)
*人名には「氏」をつける
*英語名の両端に半角スペースなどを入れない
*インタビュー中では「~です、~ます」調の文体
*インタビューには「」をつける
*数字は半角
*$:米ドル(例:US$250 million→2億5000万米ドル、15,000→1万5000 etc)
*()括弧は全角


・startup:スタートアップ
・infographic:インフォグラフィック
・pitch:ピッチする
・conference:カンファレンス
・launch:ローンチ、ローンチする
・ecosystem:エコシステム
・user:ユーザ
・traction:トラクション
・e-commerce:eコマース
・angel investor:エンジェル投資家
・serial entrepreneur:シリアルアントレプレナー
・disruptive:震撼させるような、揺るがすような、革命を起こすほどのetc -> スタートアップシーンでは度々使われる単語です。単語で訳すのではなく、都度コンテクストと合わせて文章として意味が通じるように訳してください。
・monetize:マネタイズする

備考

依頼者プロフィール欄の翻訳ガイドラインに必ず沿って翻訳してください。

該当記事です。
http://venturebeat.com/2015/02/28/how-machine-learning-will-fuel-huge-innovation-over-the-next-5-years/

ビジネス目的などより専門性の高い翻訳にはStandard翻訳

  • Word、Excel、PowerPointなど様々なファイル形式に対応
  • 文字数の上限がなく、素早い納品
  • よりスキルの高い翻訳者が担当

まずはお気軽に
お問い合わせください。