Notice of Conyac Termination ( Updated on November 25)

Translation Results Requested Through Conyac Made Public

[Translation from English to Japanese ] How Google’s using big data and machine-learning to aid drug discovery From ...

Original Texts
How Google’s using big data and machine-learning to aid drug discovery

From answering heath-related questions in its search results to a fitness data platform for developers, Google is becoming increasingly ingrained in the fabric of our daily health-and-wellbeing habits. But behind the scenes, the Internet giant is also working to expedite the discovery of drugs that could prove vital to finding cures for many human ills. Working with Stanford University’s Pande Lab, Google Research has introduced a paper called “Massively Multitask Networks for Drug Discovery” [PDF], which looks at how using data from a myriad of different sources can better determine which chemical compounds will serve as “effective drug treatments for a variety of diseases.” While the paper itself doesn’t reveal any major medical breakthroughs, it does point to how deep learning can be used to crunch huge data-sets and accelerate drug discovery. Deep learning is a system that involves training systems called artificial neural networks on lots of information derived from key data inputs, and then introducing new information to the mix. You might want to check out our guide to five emerging deep learning startups to watch in 2015.
[deleted user]
Translated by [deleted user]
ビッグデータと機械学習を薬の発見に利用するGoogleの方法

検索結果に表示される健康関連の質問に対して回答するといったことから、開発者向けのフィットネスデータ・プラットフォームにいたるまで、わたしたちの日常における健康や福利の習慣にGoogleが深く入り込んできている。しかし、このインターネットの巨人はこの裏で、人間の多数の病に対する治療法を見つける上で不可欠となり得る、薬の発見をも進めているのだ。
Google ResearchがStanford UniversityのPande Labと協力し、『Massively Multitask Networks for Drug Discovery』[PDF]という論文を発表した。「多種多様な病気に有効な薬物療法」として機能を果たす化合物は何か、ということに関してよりよい決定を下すには、無数のさまざまな情報源のデータの利用が役立つと考察している。
論文自体が医療的な大発見を明らかにしているわけではないが、膨大なデータセットを高速処理したり、薬剤の発見を加速させたりするためにディープラーニング(深層学習)を使う方法を提示している。入力した重要データから導き出した大量の情報を複数の人工ニューラルネットワーク(人工神経回路網)という組織網が網羅しているが、ディープラーニングとはその組織網を教育し、その組織網の混合に新情報を導入するシステムである。弊社では、2015年に注目すべき5つのディープラーニング・スタートアップを記事で紹介しているので、そちらをご覧になってはいかがだろう。
takuyao
Translated by takuyao
◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎◎
Login To See Other Answers

Result of Translation in Conyac

Number of Characters of Requests:
3529letters
Translation Language
English → Japanese
Translation Fee
$79.41
Translation Time
1 day
Freelancer
takuyao takuyao
Starter
忠実さと読みやすさのバランスを意識したいと思います。I work for a communication industry bridging betwee...