Deep learning is set of algorithms in machine learning that attempt to learn layered models of inputs, commonly neural networks. The layers in such models correspond to distinct levels of concepts, where higher-level concepts are defined from lower-level ones, and the same lower-level concepts can help to define many higher-level concepts.
Deep learning is part of a broader family of machine learning methods based on learning representations. An observation (e.g., an image) can be represented in many ways (e.g., a vector of pixels), but some representations make it easier to learn tasks of interestfrom examples, and research in this area attempts to define what makes better representations and how to learn them.
そのようなモデルの層は、概念のはっきり異なる各レベルにつながっており、そこでは、より高レベルの概念はより低レベルのものから定義され、同一のより低レベルの概念が、多くのより高レベルの概念の定義を助けることができます。
ディープ・ラーニングは、より幅広い族の、学習表明に基づく機械学習方法の部分です。
ある観察(例えば、あるイメージ)は、様々な方法(例えば、あるピクセルのベクトル)で表明されることができますが、その中には、例から関心のある課題を学ぶことをより容易にする表明があり、この領域の研究は、何がより良い表明となり、かつ、どのようにそれを学ぶべきかを定義しようとするものです。
深い学習は反復学習に基づいた機会学習の大きな集団の一部です。観察(たとえばイメージ)は多くの方法で表せます(例ばピクセルのベクタ)が、いくつかの表現は例からの利益を得る学習やよりよい表現や学習の方法を定義するための研究をより簡単にします。
The term "deep learning" gained traction in the mid-2000s after a publication by Geoffrey Hinton[2][3] showed how a many-layered neural network could be effectively trained one layer at a time, treating each layer in turns as a restricted Boltzmann machine. Although the backpropagation algorithm had been available for training neural networks since 1986, it was often considered too slow for practical use.[2] As a result, neural networks fell out of favor in practical machine learning and simpler models such as support vector machines dominated much of the field in the 1990s.
こちら掲載させていただきました。
http://matome.naver.jp/odai/2136828332780089701