翻訳者レビュー ( 英語 → ネイティブ 日本語 )
評価: 50 / 0 Reviews / 2012/03/02 05:32:33
The Greek philosopher Zeno considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility: the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by Democritus and then Archimedes. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result.[1] Liu Hui independently employed a similar method a few centuries later.
ギリシャの哲学者ゼノンは有限個の総和を得るために無限級数の総和の問題について熟考したが、それは不可能であるとした。その計算結果がゼノンのパラドックスである。後にアリストテレスがそのパラドックスの哲学的解法を提示したが、デモクリトス、そしてアルキメデスによって取り上げられるまでは数学的内容は未解決のままだったようである。無限個の数を累進的に細分することが有限個の総和を得るために行われ得たのは、アルキメデスの徹底的な究明の方法によってである。数世紀後、劉秀(リウシウ)はそれとは無関係であるが、似たような方法を用いた。