In embedded systems the emphasis tends to be more on the computational elements, and less on an intense link between the computational and physical elements. Multipurpose adaptivity and reliability features are playing more and more of a central role, especially while scaling silicon technologies down according to Moore´s benchmarks. Leading processor and mainframe companies are gaining more awareness of reconfigurable computing technologies due to increasing energy and cost constraints.My view is of an “all-win-symbiosis” of future silicon-based processor technologies and reconfigurable circuits/architectures. e.g. especially in safety-critical application domains like automotive, avionics and railway.
Reliability, failure-redundancy and run-time adaptivity using real-time hardware reconfiguration are important aspects for current and future embedded systems, e.g. for smart mobility in automotive, avionics, railway, etc.. Thus, scalability, as we have experienced for the last 35 years is at its end as we enter new phases of technology and certification within safety-critical application domains. Beyond the capabilities of traditional reconfigurable fabrics (like FPGAs), the so-called Multi-/Many-Core solutions are confirmed on the future semiconductor roadmaps. This requires new solutions for programming and integrating such kind of parallel and heterogenous architectures and platforms.
Nano Era with corresponding circuits/architectures allow for micro-mechanical switches that enable new memory and reconfiguration technologies with the advantage of online chip adaptivity and non-volatility. Transient faults may lead to unreliable information processing as information in nano-sized devices is much less. Power consumption and related problems present a challenge where information is processed within a smaller area/volume budget. This includes the consideration of appropriate fault tolerance techniques and especially the discussion of necessary efficient and online self-repairing mechanisms for driving such kind of future silicon and non-silicon based technologies and architectures.