As shown in Fig.8, the correlation between MMD/SMD and qmax was very negative(r = -0.69). The observed differences in qmax values can also be explained on the basis of knitted fabric surface roughness and bulk density, since heat transfers most rapidly when the contact between the skin- simulating heat source and fabrics was reduced by an irregular fabric surface contour or by the lack of compliance when depressed by
skin contact. That is to say, a rough fabric surface reduces the area of contact appreciably, and a smoother surface increases the area of contact and the heat flow, thereby creating a cooler feeling.
3 Effects of Heat, Moisture and Air Transport properties
The thermal resistance of fabrics is usually
3.熱、湿気、および空気移動特性の影響
布の熱抵抗は通常
proportional to the thickness and to the volume of air per unit area of fabric. Specifically, the relationship of 1.57c1o/cm (4clo/in)of thickness has been found for most conventional fabrics, regardless of fiber content or construction [9]. However, the thermal transfer resistance of fabrics can change with heat, moisture and airtransmittance. To examine the effects of thermal transmittance (K), moisture transmittance(Mt) and air permeability(Ap) on heat transfer of knitted fabrics for underwear, a regression analysis was carried out.TIV and qmax were expected by measuring the properties such as thermal transmittance, moisture transmittance and air permeability, according to the following regression equation.
具体的には1.57c1o(この単位はわかりません)/cm センチ、つまり(4clo/in インチ)の厚さが通じようのほとんどの布で見られた関係だった。これは布含量もしくは構成にかかわらずの値だ。(参照文献9) しかしながら布の熱伝達抵抗は、熱、湿気、そして空気移動性によって変わる。編まれた下着用布の熱伝達(K)、湿気伝達(Mt)と空気透過性(Ap)が布の熱伝達に及ぼす影響を調べるために、不具合(縮退)試験を行った。TIVとqmaxは、次の縮退式を使って、熱伝達、湿分伝達および空気透過性を測定することによって予測することができる。
最後「布の厚さと単位表面積当たりの空気体積に比例する。」を付け加えてください。 文の続きがあるときは機械的に文を途中で切られると訳に困りますから、どこか切のいいところで切ってください。