Quantum computing is about to make big trouble for cybersecurity
“Spooky action at a distance” is how Albert Einstein described one of the key principles of quantum mechanics: entanglement.
Entanglement occurs when two particles become related such that they can coordinate their properties instantly even across a galaxy. Think of wormholes in space or Star Trek transporters that beam atoms to distant locations. Quantum mechanics posits other spooky things too: particles with a mysterious property called superposition, which allows them to have a value of one and zero at the same time; and particles’ ability to tunnel through barriers as if they were walking through a wall.
「不気味な遠隔作用」。アルベルト・アインシュタインは量子力学の基本原理の1つ「エンタングルメント」をこう表現した。
エンタングルメントは、2つの粒子が強い関係性をもち、銀河系の向こうにいても瞬時にその属性を調整することが可能となった時に発生する。遠隔地に向かって原子を発する宇宙のアームホールまたは『スタートレック』のトランスポーターを考えてみるとよい。
量子力学は、他の不気味なものも推測している。それは重ね合わせと呼ばれる不思議な性質をもつ粒子で、この重ね合わせにより、1とゼロの値を同時にもつことができる。これは粒子が、まるで壁を突き抜けて歩いているがごとく障壁を突き抜けてトンネルのように通り抜けることのできる能力だ。
「遠隔怪作用」とは量子力学の一基本原理である「量子エンタングルメント(もつれ)」に対するAlbert Einstein博士の表現である。
エンタングルメントは2個の粒子が関連付き、例え銀河を挟むほどに遠く離れていたとしても瞬時に属性が同期すると発生する。宇宙のワームホールや原子を遠隔地にビームするスタートレックの転送装置を考えてみてください。量子力学には他にも不可解なことがある。重ね合わせと呼ばれる不可解な属性を持つ粒子で、1と0の測定値を同時に持つことができ、この粒子はあたかも歩いて壁を通り抜けるがごとく障害物をトンネルで通り抜けることができるのだ。
All of this seems crazy, but it is how things operate at the atomic level: The laws of physics are different. Einstein was so skeptical about quantum entanglement that he wrote a paper in 1935 titled “Can quantum-mechanical description of physical reality be considered complete?” He argued that it was not possible.
In this, Einstein has been proven wrong. Researchers recently accessed entangled information over a distance of 15 miles. They are making substantial progress in harnessing the power of quantum mechanics.
Einstein was right, though, about the spookiness of all this.
これに関しては、Einstein氏が間違っていることが証明されている。研究者は最近、量子もつれを利用して15マイル離れた通信に成功している。彼らは量子力学を十分に活用している。
このあらゆる全ての不気味さに関しては、Einstein氏の言う通りだった。
この主張については、Einstein博士が間違いであることが実証されました。最近になって研究者グループが15マイル間でのエンタングル現象の情報を入手した。量子力学の力の利活用に向けた大きな前進である。
しかしながら、不可解さという点ではEinstein博士は正しい。
Quantum mechanics is now being used to construct a new generation of computers that can solve the most complex scientific problems — and unlock every digital vault in the world. These will perform in seconds computations that would have taken conventional computers millions of years. They will enable better weather forecasting, financial analysis, logistical planning, search for Earth-like planets, and drug discovery. And they will compromise every bank record, private communication, and password on every computer in the world — because modern cryptography is based on encoding data in large combinations of numbers, and quantum computers can guess these numbers almost instantaneously.
There is a race to build quantum computers, and (as far as we know) it isn’t the NSA that is in the lead. Competing are big tech companies such as IBM, Google, and Microsoft; startups; defense contractors; and universities. One Canadian startup says that it has already developed a first version of a quantum computer. A physicist at Delft University of Technology in the Netherlands, Ronald Hanson, told Scientific American that he will be able to make the building blocks of a universal quantum computer in just five years and a fully-functional demonstration machine in a little more than a decade.
These will change the balance of power in business and cyber-warfare. They have profound national-security implications, because they are the technology equivalent of a nuclear weapon.
Let me first explain what a quantum computer is and where we are.
まず、量子コンピューターとは何か、そして私たちはどのような立場にいるのか説明しよう。
最初に量子コンピューターとは何か、そして我々の立場について説明する。
In a classical computer, information is represented in bits, binary digits, each of which can be a 0 or 1. Because they only have only two values, long sequences of 0s and 1s are necessary to form a number or to do a calculation. A quantum bit (called a qbit), however, can hold a value of 0 or 1 or both values at the same time — a superposition denoted as “0+1.” The power of a quantum computer increases exponentially with the number of qubits. Rather than doing computations sequentially as classical computers do, quantum computers can solve problems by laying out all of the possibilities simultaneously and measuring the results.
Imagine being able to open a combination lock by trying every possible number and sequence at the same time. Though the analogy isn’t perfect — because of the complexities in measuring the results of a quantum calculation — it gives you an idea of what is possible.
There are many complexities in building a quantum computer: challenges in finding the best materials from which to generate entangled photon pairs; new types of logic gates and their fabrication on computer chips; creation and control of qubits; designs for storage mechanisms; and error detection. But breakthroughs are being announced every month. IBM, for example, just announced that it has found a new way to detect and measure quantum errors and has designed a new qubit circuit that, in sufficient numbers, will form the large chips that quantum computers will need.
Most researchers I have spoken to say that it is a matter of when — not whether — quantum computing will be practical. Some believe that this will be as soon as five years; others say 20 years. IBM said in April that we’ve entered a golden era of quantum-computing research and predicted that the company would be the first to develop a practical quantum computer.